Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms
نویسندگان
چکیده
The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm(-2). Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric "mushroom" protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes).
منابع مشابه
Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملTitle: Biosensing at Disk Microelectrode Arrays. Inter-electrode Functionalization Allows Formatting into Miniaturised Sensing Platforms of Enhanced Sensitivity Biosensing at Disk Microelectrode Arrays. Inter-electrode Functionalization Allows Formatting into Miniaturised Sensing Platforms of Enhanced Sensitivity
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the co...
متن کاملDesign, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation
In this paper, a novel dual-sided microelectrode array is specially designed and fabricated for a rat Parkinson's disease (PD) model to study the mechanisms of deep brain stimulation (DBS). The fabricated microelectrode array can stimulate the subthalamic nucleus and simultaneously record electrophysiological information from multiple nuclei of the basal ganglia system. The fabricated microelec...
متن کاملA cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays.
A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofu...
متن کاملSensing Arrays Constructed from Nanoparticle Thin Films and Interdigitated Microelectrodes
This paper describes the results of a study of a few design parameters influencing the performance of sensor arrays constructed from nanostructured thin films and interdigitated microelectrodes (IMEs). The nanostructured thin films on the IME devices were prepared from nonanedithiol (NDT) and mercaptoundecanoic acid (MUA) linked assemblies of 2-nm sized gold nanoparticles. The sensor array data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2010